Received 10 March 2007

Accepted 3 April 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sheng-Gui Liu^a* and Chun-Lin Ni^b

 ^aSchool of Chemistry Science and Techonology, Zhanjiang Normal University, Zhanjiang
524048, People's Republic of China, and
^bDepartment of Applied Chemistry, Laboratory of Inorganic Functional Materials, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China

Correspondence e-mail: lsgui@sohu.com

Key indicators

Single-crystal X-ray study T = 291 KMean $\sigma(C-C) = 0.005 \text{ Å}$ Disorder in solvent or counterion R factor = 0.052 wR factor = 0.140 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(tetraethylammonium) bis[*N*,*N*'-bis(4-methylbenzothiazol-2-yl)pyridine-2,6-dicarboxamidato(2–)]nickel(II) hemihydrate

In the anion of the title compound, $(C_8H_{20}N)_2[Ni(C_{23}H_{15}-N_5O_2S_2)_2]\cdot 0.5H_2O$, the central Ni^{II} atom is in an octahedral environment, with four deprotonated amide N atoms in the equatorial plane and two pyridine N atoms in the axial positions. In the crystal structure, intermolecular $O-H\cdots O$, $C-H\cdots O$ and $C-H\cdots S$ hydrogen bonds link the molecules into a three-dimensional supramolecular framework.

Comment

Transition complexes with non-macrocyclic chelating ligands containing the amide functionality have drawn much attention in past years (Bruckner *et al.*, 2000). Some investigations have revealed that deprotonated N atoms of organic amides, being anionic in nature, are capable of stabilizing the trivalent oxidation state to a considerable extent (Patra & Mukherjee, 1999; Singh *et al.*, 2003). Recently, there has been an increasing interest in the chemistry of deprotonated carboxamide toward transition metal ions as a result of their striking catalytic activities (Qi *et al.*, 2003). In order to develop further the coordination chemistry of pyridine amide ligands with transition metal ions, we have synthesized an Ni^{II} complex based on N,N'-bis(4-methylbenzothiazol-2-yl)pyridine-2,6-dicarboxamide, (L^{2-}) .

In the IR spectrum of the title complex, (I), the absence of ν (NH) (3170 cm⁻¹) confirms that the ligands are coordinated to Ni^{II} ions in the deprotonated form. The C=O stretching vibration (1632 cm⁻¹) is lower than that of the free ligand (1655 cm⁻¹). Such behavior is also observed in another deprotonated amide complex (Liu *et al.*, 2004).

In (I), the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987). The structure of the anion of the complex is shown in Fig. 1. The Ni atom is coordinated by four deprotonated amide N atoms in the equatorial plane and two pyridyl N atoms in the axial positions. The dihedral

© 2007 International Union of Crystallography All rights reserved

Figure 1

The structure of the anion in the title compound, with the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

angle between the two planar units N1/N2/N4/Ni1 and N6/N7/N9/Ni1 is 87.1 (8)°. The geometry of the NiN6 coordination is appreciably compressed octahedral. The bond angles involving the chelation obviously deviated from 90°, which is presumably due to the formation of the five-membered chelate rings. The average Ni $-N_{amide}$ [2.179 (3) Å] bond is longer than that of Ni $-N_{py}$ [1.970 (3) Å], which is the result of the steric predominance over electronic effects in (I).

In the crystal structure, intermolecular $O-H\cdots O$, $C-H\cdots O$ and $C-H\cdots S$ hydrogen bonds link the ions into a three-dimensional supramolecular framework.

Experimental

The ligand H₂L was synthesized according to the literature method (Liu *et al.*, 2004). The ligand H₂L (460 mg, 1 mmol) and NaH (48 mg, 2 mmol) in DMF (15 ml) were added to a solution of NiCl₂·6H₂O (237 mg, 1 mmol) in DMF (5 ml). The resulting solution was magnetically stirred for 15 min, and then excess [Et₄N]Cl.xH₂O was added and the mixture was stirred for about 1 h. Exposure of this solution to air for a week gave light-yellow single crystals, suitable for structural studies (yield 470 mg, 75.60%).

Crystal data

$(C_8H_{20}N)_2[Ni(C_{23}H_{15}N_5O_2S_2)_2]$ -	$\beta = 97.642 \ (2)^{\circ}$
0.5H ₂ O	$V = 6083.2 (11) \text{ Å}^3$
$M_r = 1243.28$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.4474 (15) Å	$\mu = 0.52 \text{ mm}^{-1}$
b = 19.514 (2) Å	T = 291 (2) K
c = 21.771 (2) Å	0.3 \times 0.25 \times 0.2 mm

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.86, T_{max} = 0.90$

Refinement

Table 1

$R[F^2 > 2\sigma(F^2)] = 0.052$	769 parameters
$vR(F^2) = 0.140$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
1915 reflections	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

32320 measured reflections

 $R_{\rm int} = 0.026$

11915 independent reflections

10496 reflections with $I > 2\sigma(I)$

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D5-H5B\cdots O2^{i}$	0.85	2.14	2.900 (6)	150
$C12 - H12 \cdots O2^{n}$ $C56 - H56B \cdots O1^{iii}$	0.93 0.97	2.52 2.27	3.340 (4) 3.214 (5)	147 164
$C57 - H57A \cdots O3^{iv}$ $C62 - H62A \cdots S3^{iv}$	0.96 0.97	2.59 2.78	3.392 (4) 3.461 (4)	141 128

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y, -z; (iii) -x + 1, -y + 1, -z; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

H atoms were positioned geometrically with O-H = 0.85 Å, and C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic and methylene H, and x = 1.5 for all other H atoms.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Zhanjiang Normal University Research Foundation for Doctorates.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruckner, C., Retting, S. J. & Dolphin, D. (2000). *Inorg. Chem.* **39**, 6100–6106. Bruker (2000). *SMART* (Version 5.625), *SAINT* (Version 6.01), *SHELXTL*

- (Version 6.10) and *SADABS* (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, S.-G., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2004). Acta Cryst. E60, m1153–m1155.
- Patra, A. K. & Mukherjee, R. (1999). Inorg. Chem. 38, 1388-1393.
- Qi, J. Y., Ma, H. X., Li, X. J., Zhou, Z. Y., Michael, C. K. C., Chan, A. S. C. & Yang, Q. Y. (2003). *Chem. Commun.* pp. 1294–1295.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Singh, A. K., Balamurugan, V. & Mukherjee, R. (2003). Inorg. Chem. 42, 6497– 6502.